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Abstract 
This project centers on developing an autonomous underwater vehicle (AUV), 

encompassing the design of its hardware system, and implementing a control system utilizing 
Robot Operating System 2 (ROS2). 
 

The project is executed in two main stages. The initial stage focuses on developing the 
AUV’s hardware system, which includes its electrical architecture and mechanisms crucial for 
underwater functionality. This stage ensures the AUV’s essential controllability and 
comprehensive operation in submerged conditions. 
 

The second stage is dedicated to advancing the control system within the ROS2 framework. 
The framework involves creating control nodes and integrating them with other team members’ 
nodes (subsystems) to form a unified autonomous underwater vehicle system. This system is 
designed to process control commands from autonomous programs and manage the AUV’s 
hardware systems and behaviors accordingly. In this stage, the utilization of ROS2 is first 
researched and studied, and the programming methods, such as various libraries and object-
oriented programming, are frequently practiced to construct the control system. After the ROS2 
development, other team members’ nodes are consolidated into the control system by designing 
unified ROS2 communication interfaces. 
 

At the end of the project, this project successfully developed a hardware system for the 
AUV, which includes the electrical architecture and essential mechanisms for underwater 
functionality. The AUV control system, built on ROS2, effectively utilizes ROS2 client library 
APIs to establish a robust communication layer for the AUV’s subsystems, such as the 
autonomous, buoyancy, and thruster subsystems. After the testing of the ROS2-based AUV control 
system underwater, it is also believed that the control system is effective and confident in handling 
control commands from autonomous programs to control the hardware system of the AUV. 
 

Apart from the integration between the hardware system and the control system, this 
project has discussed and introduced practical telecommunication solutions, enabling efficient 
remote control, configuration, testing, and commissioning of the AUV system. The project also 
contributes to the development of AUV technology by providing innovative solutions to 
underwater exploration and automation challenges. 

 
The use of ROS2 as the AUV control system is a novel approach in the academic 

community, where it has the potential to significantly reduce development costs and accelerate the 
pace of AUV innovation. The project’s development of a control system that draws inspiration 
from the “reverse proxy” concept represents a unique innovation, allowing for a more efficient and 
robust management of the AUV’s hardware systems and behaviors. 

 
The implications of this project extend beyond the immediate development of an AUV. By 

utilizing a free and open-source framework like ROS2, the project opens up new possibilities for 
researchers and developers in the AUV field to collaborate and innovate. This not only lowers the 
barrier to entry for new participants but also fosters a community-driven approach to AUV 
development, which can lead to more rapid advancements in the field. 
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1. Introduction 

1.1  What is an AUV 

An Autonomous Underwater Vehicle (AUV) is an underwater vehicle that operates 
independently of direct human control. Unlike Remotely Operated Vehicles (ROVs), controlled 
by operators on the surface or onshore, AUVs are self-contained systems capable of performing 
tasks automatically based on pre-programmed instructions. 

 
Figure 1: An Autonomous Underwater Vehicle (AUV) [1] 

 
AUVs are crucial in various fields, such as ocean exploration, resource mapping, and 

environmental monitoring. They are essential in areas where human presence is limited or 
hazardous, such as deep-sea research or disaster response. AUVs provide a means to gather data 
and perform tasks in these environments without direct human intervention. Below are some 
reasons to develop an AUV essentially [2][3][4][5]: 
 
1. Advancing Ocean Exploration: AUVs can access areas of the ocean that are otherwise inaccessible 

to humans, enabling the discovery of new species, mapping of underwater landscapes, improvements 
in marine science, and the study of aquatic ecosystems. 

2. Resource Mapping and Management: AUVs are used to map and monitor underwater resources, 
such as oil and gas deposits, minerals, and fishing grounds. This information is critical for 
sustainable resource management and economic development. 

3. Environmental Monitoring: AUVs can monitor the health of marine environments, detect 
pollution, and study the impact of human activities on the ocean. This data is essential for 
understanding and addressing environmental challenges. 

4. Disaster Response: In the event of an oil spill or other underwater disasters, AUVs can be deployed 
to assess the extent of the damage and assist in cleanup efforts. 

Therefore, it is interesting to develop an AUV alongside my team members. It is also 
believed that this project holds significant implications for ecology, technological advancement, 
and sustainable development. The prospect of contributing to such a multifaceted endeavour is 
both intellectually stimulating and personally rewarding. 
 

Beyond the intrinsic value of AUVs in advancing ocean exploration, resource mapping, and 
environmental monitoring, it is also challenging to design and construct an AUV. The project 
presents a formidable test of my perseverance and problem-solving skills, characteristics that I 
embrace and find deeply satisfying. The opportunity to grapple with complex technical issues 
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and witness the fruits of our collective labour drives my enthusiasm for this project. 

1.2 Characteristics of an AUV 

By referencing from AUV development literature [6] and an AUV competition rule book 
[7], AUVs may include the following characteristics: 

1. Integrated Computer System: AUVs have an onboard computer system that processes input and
output signals, allowing them to make decisions and execute tasks without external input.

2. Embedded Power Source: AUVs are powered by internal energy sources, such as batteries, and do
not rely on external power cables (tetherless), allowing them to operate independently underwater.

3. Specialized Wireless Communication: AUVs are equipped with wireless communication systems
that enable them to transmit data to and receive instructions from operators onshore or surface
vessels, particularly during testing, commissioning, or when adjusting mission parameters.

4. Real-time Image Processing for Autonomous Operation: Many AUVs can use image recognition
algorithms to navigate and avoid obstacles underwater, ensuring safe and efficient operations even in
complex underwater environments. Therefore, AUVs can follow pre-programmed missions and carry
out tasks without real-time human intervention. They are designed to function without human-made
disturbances during normal operations.

5. Physical Actuators: AUVs are equipped with physical actuators to perform various underwater
movements. This system typically includes thrusters and buoyancy, which allow AUVs to manoeuvre
horizontally (i.e. forwards, backward, left, right) and vertically (i.e. up, down, diving, ascending). The
control system is responsible for translating the computer’s decisions or commands into actual vehicle
movements through the water.

6. Display Screen: Although AUVs operate autonomously, they often feature a display system that
provides a visual interface for operators during certain phases, such as mission planning, testing, or
maintenance. This display can show system status, such as the vehicle’s position, speed, heading,
power levels, and other relevant operational data. It may also be used to monitor sensor data and
perform diagnostics, ensuring that the AUV functions as intended and allowing operators to intervene
if necessary.

1.3 Reasons for Constructing an AUV with ROS2 

In underwater robotics, Remotely Operated Vehicles (ROVs) have traditionally been the 
preferred choice for tasks requiring real-time human control due to their maturity and lower 
costs. However, as the demand for efficient and cost-effective autonomous solutions grows, 
there's a burgeoning interest in AUVs. 

ROVs necessitate constant human oversight, limiting their autonomy and flexibility. 
Despite their widespread use, it's important to note that AUVs, while more expensive with costs 
ranging from US$2-6 million, offer distinct advantages such as a depth rating of up to 3,000 
meters and faster survey capabilities, making them an attractive option for various underwater 
tasks [1]. 

Recognizing the potential for a more accessible and widespread use of AUVs, this project 
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focuses on developing a cost-effective AUV structure with Robot Operating System 2 (ROS2). 
ROS2 is a structured communication layer above the operating system. The reason for choosing 
ROS2 to develop an autonomous program is that ROS2 is an open-source, free, modular robotics 
software framework. It is also designed to meet the needs of next-generation robotics 
applications by providing a robust middleware that enables different programs to communicate 
and exchange data effectively through custom-defined interfaces. Therefore, this architecture 
facilitates developing, testing, and deploying individual components in complex AUV 
subsystems and offers a cost-effective solution for creating a robotic solution. 

1.4 Project Goal 

This project addresses a diverse range of challenges, including the design of an electrical 
system that meets the AUV’s power requirements, the creation of AUV mechanisms, the 
definition of ROS2 nodes’ functions, and the efficient transmission of control commands through 
nodes to manage the AUV’s hardware components within a ROS2-based control system. 

1.5 Objectives of this project 

The primary objectives of this project are as follows: 
1. Design and construct the AUV’s hardware, primarily focusing on the electrical system.
2. Develop basic control programs for the AUV’s thrusters.
3. Acquire knowledge of Python object-oriented programming and ROS2 application

programming interfaces (APIs).
4. Develop a framework for a ROS2-based AUV control system with custom ROS2 interfaces.
5. Define ROS2 interfaces with team members to ensure seamless integration and

communication.
6. Consolidate team members’ nodes (subsystems) into a unified system.
7. Test and debug nodes to ensure that the AUV control system can effectively handle and

process data from team members’ systems, thereby controlling the AUV stably and executing
autonomous tasks correctly.

1.6 Report Overview 

This report begins with a background to the general design considerations for 
autonomous underwater vehicles (AUVs) and the planned ROS2 control architecture (Section 2). 
It then delineates the design and control of the electrical system, including thruster control. The 
report continues with an explanation of how ROS2 nodes are utilized to control the AUV and 
facilitate communication with other team members’ nodes (Section 3). Subsequently, the report 
presents the analysis of the project results (Section 4). The report then discusses the project’s 
limitations and weaknesses and reflects on potential improvements (Section 5). In conclusion 
(Section 6), the report summarizes the project achievements and learning outcomes from this 
project. 
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2. Background 

2.1 General AUV Hardware Development 

An AUV hardware development involves both an electrical system and a mechanical 
system, so a general design of an AUV should identify and consider the following factors: hull 
design, propulsion, submerging, and electric power [8]. 
 

The design of the hull emphasizes the critical need to house AUV components in a dry, 
watertight environment. It should prioritize easy accessibility and maintainability of components 
and incorporate modularity to accommodate potential future changes or additions to the AUV 
structure [3]. 
 

 
Figure 2: General design for an AUV [8] 

 
Propulsion and submerging can refer to the presence of effective thrusters and a fast-

response buoyancy system, respectively, and electric power can be considered a high-
performance power source (high current drawing battery). 

Generally, the thrusters provide vertical movements, while the buoyancy system provides 
horizontal movements for the AUVs. Thrusters used in the AUVs operate based on the principle 
of reaction force to propel the vehicle. In the context of underwater vehicles, they expel water 
with force in one direction. According to Newton's third law, the vehicle also experiences an 
equal and opposite reaction force, resulting in a forward motion. The buoyancy system can be a 
ballast system that pumps water in or out to control buoyancy and the AUV's depth. The primary 
purpose is to adjust the vehicle's weight, affecting its overall density and ability to float or sink. 
Therefore, when developing the ROS2-based control system nodes, they should be able to 
communicate with the thruster and buoyancy systems and implement hardware control on them.  

2.2 Electrical System 

 When developing an AUV electrical system, it is necessary to consider what electronic 
components should be included in a hull. According to a conference paper about AUV design 
[9], a simple AUV has the following electrical circuit design: 
 

Thrusters 

Buoyancy System 

Power 

 

Hull Design 
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Figure 3: An Example of AUV Electrical System Design [9] 

 
 From the above figure, it is observed that the above AUV electrical system includes a 
LiPo 3S battery, DC-DC converter, Raspberry Pi 3 (RPi 3) computer board, Pixhawk, motor 
driver, and electronic speed controllers (ESCs). The 12VDC battery powers the DC-DC 
converter, which steps down a voltage to 5VDC to power the RPi 3 and the Pixhawk, the motor 
driver, and ESCs. The RPi 3 provides GPIO signals to control the motor driver. The Pixhawk 
provides PWM signals to ESCs to control thrusters. 
 

Therefore, an AUV electrical system can be designed and conducted based on this 
reference. For instance, a new AUV electrical system can include the following components:  
 
Input Devices: 

1. A camera for computer vision and an AUV autonomous system. 
2. A pressure sensor for reading depth values and AUV buoyancy system 

Output Devices: 
1. ESCs to control thrusters. 
2. Thrusters to produce horizontal moving force. 
3. Motor drivers/water pumps control the buoyancy system to produce vertical moving force. 

 
Power Devices: 

1. A high-current battery 
2. A DC-DC converter to provide suitable voltages for electronic devices. 
3. Fuse boxes to protect devices if short-circuited. 
4. A kill-switch to turn on/off the AUV. 

Others: 
1. An integrated computer for processing I/O signals 

2.3 Mechanical System 

The mechanical system design of the AUV involves storing components, constructing 
frames, and positioning components such as thrusters, electronic components, and buoyancy.  
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2.3.1 Storing for Components 
 Electronic components such as the computer board, ESCs, battery, and wires should be 
stored in a closed space such as inside a cylinder with sealing caps. The rubber gaskets provide 
tension forces between the sealing cap and the lid of the cylinder to avoid water leakage [10]. 
 

 
Figure 4: Design of a Waterproof Cylinder [10] 

2.3.2 Frame Design 
 When considering the frame design, it is critical to determine different factors, such as 
the materials for the frame, the hull design, the frame's weight, and the number of thrusters and 
cylinders to use. 
 
 Since our AUV will use a buoyancy system for the vertical movements of the AUV, we 
may consider using at least two cylinders in the AUV. One cylinder stores electronic components 
and the other uses the buoyancy system. Therefore, thrusters can only be used for exerting 
horizontal forces, resulting in a deduction of thrusters. For example, two thrusters are enough to 
drive the AUV in this project. 
 
 To construct the AUV frame efficiently, it is worth considering using acrylic to 
manufacture the frame for the AUV. Acrylic is highly amenable to precision machining, 
including laser cutting, allowing us to achieve accurate and intricate designs that align with our 
specific requirements. Furthermore, acrylic is both lightweight and robust, making it a suitable 
choice for the frame of the AUV. These qualities contribute to the overall flexibility and 
durability of the AUV design. 

 

 
Figure 5: Preliminary AUV frame design 

2.4 ROS2 Architecture and Communication Patterns Review 

2.4.1 ROS2 Architecture 
 In this project, ROS2 is used as the communication layer for different AUV subsystems, 
such as the autonomous subsystem (image processing system), the buoyancy system, the thruster 
subsystem, and the control system. According to the ROS2 design sheet [11], the ROS2 is 
referred to as middleware because it provides a set of client library interfaces (APIs) such as 
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rclpy (Python API library) and rclpp (C++ API library) that allow different programs to 
communicate and exchange data. The ROS2 abstracts the underlying communication details and 
provides a standardized way for programs (packed as nodes) to send and receive messages. In the 
bottom layer, ROS2 uses a middleware, a Data Distribution Service (DDS), to handle the actual 
data communication. DDS is a standard for publish-subscribe messaging that provides low-
latency, high-reliability data communication across distributed systems. As a result, ROS2 
leverages DDS to translate the data sent between nodes into a format that DDS can understand 
and then forwards it to the appropriate destination.  
 

 
 
 

Figure 6: ROS2 Architecture [11] 
 
 After understanding the architecture of ROS2, it’s also necessary to understand the ROS2 
client APIs so that developers can add them into different programs correctly to establish node 
communications. Since Python is the programming language used to develop the AUV control 
system in this project, the ROS2 Client Library for Python (rclpy) is utilized. Similar to the 
rclcpp (ROS2 C++ API) and rcljava (ROS2 Java API), the rclpy provides three communication 
patterns: topics, services, and actions, for developers to develop nodes. 
 

2.4.2 Communication Platform 
 ROS2 offers a comprehensive set of communication layers and application programming 

interfaces (APIs) such as Topics, Services, and Actions. These enable developers to define the 
data flow and control between nodes, ensuring coordination and synchronization in distributed 
systems. As a result, data can be shared and processed between different functional nodes. 
Therefore, ROS2 provides an advantage in that teammates responsible for other AUV 
subsystems do not need to be concerned about the methods to transfer data from their subsystems 
to another subsystem. They can concentrate more on developing their AUV subsystems. 
 

Operating System Layer: Windows, Linux, macOS 
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Figure 7:  Communication Patterns in ROS2 [11] 

 
2.4.3 Nodes 

 After understanding the architecture and communication patterns of ROS2, nodes are 
introduced. In ROS2, nodes are processes that perform computation [12]. They are essentially 
standalone programs enhanced with ROS2 client library interfaces (APIs) to facilitate standard 
ROS2 data communications. 
 

 
Figure 8: Data Transfer between ROS2 Nodes 

 
 Take the above figure as an example. The ROS2 APIs provide standard or customized 
network interfaces to allow programs to transfer data conveniently so that the complexity of 
these programs can be reduced. Teammates can, therefore, focus more on developing the AUV 
subsystems and do not need to spend time building wheels for communication. 
 

2.4.4 Topic 
 The Topics interface is the simplest communication method in ROS2. It provides a 
publish-subscribe functionality, similar to Message Queuing Telemetry Transport (MQTT), to 
allow one node to periodically publish/broadcast messages under a specific topic name and other 
interested nodes to subscribe to the relevant topics to obtain messages [13]. This communication 
pattern is generally used in nodes that implement periodic tasks such as recording sensor data 
and monitoring system status. 
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Figure 9: An example of ROS2 Topics 

For example, a program developed initially to read data from a pressure sensor can be 
packed as a node (publisher) after it is added to the ROS2 Topics interface to publish the sensor 
data messages by a specific topic name (i.e. sensorA_node) periodically. Another node 
(subscriber), such as the display_node, can be developed by adding the ROS2 Topics interface to 
subscribe to the messages published from the sensorA_node and print out the obtained data from 
the pressure sensor. 
 

2.4.5 Services 
 ROS2 provides a request-response style pattern that allows easy data association between 
a request and response pair [15]. A request-response communication pattern is commonly used in 
the Internet protocol, such as a client's Hypertext Transfer Protocol (HTTP) request to request a 
picture with headers and an HTTP response from a server with headers and contents. 
 

 
Figure 10: An Example of an HTTP Request and Response [15] 

 
The ROS2 service interface is valuable and important because it can be used to ensure 

that whether services-based server nodes acknowledge or complete tasks after a request is sent 
from services-based client nodes. Take the below figure as an example. In the beginning, the 
control_node (client) announces a “turn on fan” request with a service name “fan_control”. 
Then, the fan_node (server), which listens to the service name “fan_control”, receives the request 
(message) from the client and implements the request by turning on the fan. After that, the 
fan_node program checks that no errors occurred and responds to the control_node to turn the 
fan on successfully. 
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Figure 11: An Example of ROS2 Services-based Nodes 

 After receiving the response from the fan_node, the control_node knows that the control 
command has been implemented successfully and allows the next action to be implemented. If 
errors occur while turning on the fan, the fan_node may respond to a failure message to 
control_node to tell it that the task cannot be implemented. Hence, the control_node may 
announce urgent signals to notify users or implement further actions, such as requesting the 
fan_node to turn on the fan again. 
  

2.4.6 Actions 
ROS action interface is a higher-level communication pattern that combines both 

communication patterns of topics and services [16]. Similar to the standard service’s request-
response communication pattern, the server side provides Topics-based feedback messages to the 
client before a response is sent back. Such communication interfaces can be used in robotics 
applications, such as closed-loop control of the velocity of a vehicle. 

 

 
Figure 12: An Example of ROS2 Actions-based Nodes 

 
  Take the above figure as an example. When the control_node establishes an action 
communication with the motor_node, it first sends a service request of a goal to the motor_node 
to increase the motor’s speed (300RPM). If the motor_node receives the request for the goal, it 
responds with an acknowledgment back to control_node. Afterwards, the control_node sends a 
second request for results after receiving the acknowledgement. The motor_node receives the 
second request and responds by publishing frequent feedback on the current motor speed by the 
ROS2 topics interface back to the control_node (i.e. 250RPM, 255RPM, 263RPM…). The 
control_node can, therefore, know that the speed of the motor is increasing. Once the motor 
reaches 300RPM, the motor_node completes the program and responds to the control_node, 
indicating that the implementation is completed successfully.  
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2.4.7 Custom-defined Interfaces 
 While ROS2 streamlines the process of exchanging data through its intuitive 
communication patterns, it is essential to establish well-defined interfaces for these patterns. 
These interfaces serve as a contract or norm that specifies the data types being transmitted and 
received, such as Booleans, integers (i.e. int32), floating point numbers (i.e. float64), strings, etc. 
[17][18]. The data types ensure that nodes within the system can interact seamlessly by adhering 
to a common understanding of the data structure. Therefore, different nodes can efficiently 
import and export variables with correct data types from the ROS2 network, and invalid data 
type errors can be prevented. 

 
For instance, consider a scenario where we need to define a message interface for a 

sensor node (i.e. sensorA_node), which publishes depth values from a pressure sensor. The 
interface may look like this: 

int32 depth_value 
 
This simple interface is defined within a ROS2 .msg file, which is then compiled into a 

language-specific format that nodes can utilize. With this approach, sensorA_node can publish a 
topic containing an int32 variable named depth_value, and a display_node can subscribe to this 
topic to receive and process the depth_value presented by a data type of int32. 

 
In addition to creating custom interfaces, developers can leverage ROS2’s extensive 

library of standard message (.msg), service (.srv), and action (.action) interfaces to facilitate data 
transfer. For example, ROS2 provides a standard message interface for images [19] and is widely 
used in robotics and computer vision applications. These predefined interfaces cover a wide 
range of common data types and are designed to promote interoperability across different nodes 
and packages within the ROS2 ecosystem. 

 
In summary, the custom-defined interfaces in ROS2 are vital for maintaining clear 

communication channels between nodes by outlining the structure and type of data being shared. 
This practice not only enhances the interoperability of the system but also simplifies the 
development process by providing a consistent framework for data exchange. 

  

2.5 Advantages of ROS2 

Apart from the benefits of using ROS2 as a communication layer for the AUV control 
system, ROS2 also brings the following advantages [11] to this project: 
 
 
1. Cross-Platform Support: ROS2 supports a wide range of operating systems and hardware 

platforms, including Linux, Windows, macOS, ARM64, and x86_64, as it leverages DDS to 
translate the data. This versatility makes it suitable for applications to be built across different 
environments. Consequently, ROS2 bridges the communication gap between different system 
versions or architectures, allowing nodes on various systems to interact with one another once 
ROS2 is installed. 
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2. Quality of Service: ROS2 is built to handle complex distributed system architectures, leveraging the 
Data Distribution Service (DDS) communication protocol with Quality of Service (QoS) [20]. This 
ensures efficient and reliable data transfer even in challenging network conditions. 

 
3. Community Support: ROS2 benefits from a vibrant open-source community that provides a wealth 

of tools, libraries, and documentation. This support facilitates code sharing and reuse, accelerating 
the development process. For example, it is free to download different ROS2 tools such as Gazebo 
(robot simulation) and tf2 (transform library) to advance the robotic system further. 

 
4. Diverse Network: ROS2 nodes can communicate across different computer devices within the same 

IP segment of a local area network (LAN). This feature simplifies the process for developers to 
monitor and access the status of various nodes. It also enables the establishment of master-slave 
relationships between different computer boards, such as connecting a main computer board to a 
companion computer board. This setup allows the companion board to handle specific tasks 
independently while still being integrated into the more extensive system. For example, the main 
computer board could be responsible for real-time control and decision-making, while the company 
board handles data logging, analysis, or control of external systems. This division of labour not only 
enhances system efficiency but also facilitates modular development and easier maintenance. 

2.6 Pros and Cons of Using Services instead of Topics in ROS2 Control System 

Owing to the time constraints and the appropriate workload associated with the final-year 
project, this project focuses on primarily employing the ROS2 services interface in conjunction 
with the topics interface to construct the ROS2-based control system. 

 
Before establishing an AUV control system framework with ROS2, it is imperative to 

weigh the advantages and disadvantages of employing either the topic interface or the service 
interface. As outlined in the official ROS2 documentation [18][21], the distinguishing 
characteristics of these two communication mechanisms are summarized in the table below: 
 

Aspect ROS2 Topics ROS2 Services 
Communication Asynchronous message 

passing between nodes 
Synchronous request-

response communication 
between nodes 

Data Flow One-to-many (publishers to 
subscribers) 

One-to-one (client to service) 

Usage Ideal for continuous data 
streams, such as sensor data 

Suitable for discrete 
operations, such as setting 
parameters or performing 

specific actions by commands 
Real-time Feedback Subscribers receive data as it 

is published, without direct 
feedback to publishers 

Services provide immediate 
response or confirmation to 

clients 
Suitability Well-suited for periodic and 

time-sensitive data 
Better for non-periodic, 

logical operations that require 
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immediate results 
Complexity Simpler architecture for data 

distribution 
More complex as it involves 

request and response handling 
Error Handling Messages may be lost if not 

configured with appropriate 
QoS settings 

Guaranteed immediate 
processing upon request 

Table 1: Comparison between ROS2 Topics and Services 
 

 When designing an AUV control framework, the choice between the topic interface and 
the service interface depends on the system's specific requirements. Topics are generally 
preferred for real-time data streams that require continuous updates, such as sensor readings and 
control signals. On the other hand, services are more appropriate for tasks that require immediate 
and transactional operations, such as changing system parameters or initiating certain actions 
based on specific conditions. Therefore, the ROS2-based AUV control system should use 
Services to process commands from other subsystems and Topics to publish continuous data, 
such as the status of the AUV.  

2.7 Design Flow of the Project 

 In this project, the hardware systems for the AUV, such as the electrical and mechanical 
systems, are first developed. According to AUV hardware design and development literature 
[22], the design flow for AUV hardware systems can be classified into different stages as 
follows: 

 
Figure 13: Design flow for an AUV 

 This block diagram shows that the AUV development proceeds with the design of the 
electrical system, such as designing the circuit diagram (power & signals, I/O control), and the 
design of the mechanical system, such as the AUV’s frame, concurrently.  
 
 After the electrical system and the mechanical system are designed, the AUV 
construction begins. Components are bought or manufactured to assemble according to these 
systems. During the construction, these systems can also be adjusted to fulfil the requirements, 
such as increasing water resistance for circuit wiring. 
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 When the electrical and mechanical systems are constructed, basic controllable 
functions are developed to test and commission these systems for further improvements, such as 
offsetting speed differences between AUV thrusters. Once basic control methods are well-
developed, ROS2 client library (rclpy) APIs are utilized to develop ROS2 nodes with those 
control functions to establish the AUV control system based on the ROS2 communication layer. 
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3. Methodology 

3.1 Hardware Development 

 3.1.1 Electrical System Design 

Circuit Diagram 
 

After the project research, this project’s AUV contains the following characteristics: 
 
 1. An integrated computer system to process I/O data. 
 2. An embedded power source to power the AUV 
 3. Autonomous programs to control the AUV 
 4. Specialized Wireless Communication to communicate with the AUV 
 5. Physical actuators such as thrusters and buoyancy to control AUV’s movements. 
 
 Therefore, this project’s AUV composites of the following components: 
 

 An Orange Pi 5 Plus computer board (OP5P) with Linux Ubuntu installed for data processing 
and controlling the AUV. 

 A DC-DC Converter for stepping down voltage for electronic components. 
 A Kill Switch acts as a relay for switching on/off DC-DC buck converter as well as the AUV. 
 Electronic Speed Controllers (ESCs) for controlling AUV thrusters by PWM signals. 
 Thrusters for propelling the AUV. 
 Jump Wires for connecting pins on the OP5P to electronic components. 
 A 4-Cell (4S) Battery for providing 14.8V voltage to the DC-DC Converter and thrusters. 
 Fuse boxes to protect the AUV if short-circuited. 
 A display screen to display the AUV system status. 
 A 27MHz receiver  
 A Raspberry Pi computer board (RPi) with Linux Debian installed (AUV buoyancy system) 
 A Pressure Sensor for measuring underwater depth and temperature (AUV buoyancy system) 
 A Pixhawk (AUV buoyancy system) 
 A L298N Motor Driver (AUV buoyancy system) 
 A USB Camera (AUV autonomous system). 

 
The finalized AUV circuit design is given in below: 
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Figure 14: Electrical System for AUV 

 
Figure 14 shows three areas: the area of the electronic cylinder, which stores the main 

electronic components; the area of the buoyancy system, which controls the floating capability of 
the AUV; and the area of onshore space. It is noted that electronic components for the AUV 
buoyancy subsystem and the AUV autonomous subsystem, such as the Pixhawk, L298N motor 
driver, MPU6050, and camera, are irrelevant to this project. However, they may still be 
discussed in the following sections for a better interpretation of this project goal.  

 
In the electronic cylinder, the main computer board refers to the Orange Pi 5 Plus 

(OP5P), which has a high processing performance and operates ROS2 seamlessly. It connects the 
USB camera to capture images for autonomous programs. It also provides PWM channels for 
controlling ESCs to drive thrusters with different speeds. The DC-DC converter provides 
stepped-down output voltages (i.e. 5VDC and 12VDC) from the 4S battery (14.8VDC) for 
powering computer boards, display screen, and the motor driver for the buoyancy system. It also 
provides unchanged output voltages (14.8VDC) for ESCs and thrusters. A 27MHz receiver is 
used to receive 6-bit data from the onshore which is read by GPIO on a Raspberry Pi Pico (RPi 
Pico)/ESP32. The RPi Pico/ESP32 then transmits the 6-bit value to the OP5P through UART 
serial communication to establish a simple telecommunication. An internal display is installed 
inside the electronic cylinder to display console output messages from the OP5P through HDMI 
signals.  
 

Apart from the electronic cylinder, the AUV’s battery is preferably stored in an external 
box so that it can be replaced or recharged conveniently without accessing electronic 
components in the electronic cylinder. This approach increases the accessibility of the AUV and 
improves its hull design. 

In the onshore area, the 27MHz transmitter is controlled manually to communicate with 
the receiver inside the AUV. A computer can also remotely control the OP5P and Raspberry Pi 
(RPi) by the secure shell (SSH) through an RJ45 ethernet cable. 
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Power System 
The AUV power electronic devices are shown below: 
 

 
Figure 15: DC-DC Converter 

 
 The green board is the AUV DC-DC converter. The converter has the following ports: 
 
1. An input source that is adapted by an XT60 socket. The XT60 socket is further connected to a power 

source such as a 4-cell battery (14.8VDC).  
2. A 5VDC Vout terminal provides power to the OP5P, Raspberry Pi, and display screen. 
3. A 12VDC Vout terminal provides power to the L298N motor driver for the buoyancy system. 
4. 2 pairs of M+/M- outputs terminal (14.8VDC) which connects to two ESCs. Two thrusters are further 

connected to the two ESCs.  
5. A kill switch relay is used to switch the DC-DC converter and the AUV on/off. 

Furthermore, fuse boxes are installed between the DC-DC converter and the 4S battery. It is 
crucial to avoid short circuits inside the electronic cylinder. If the circuit is shorted and water 
leakage is present, water may be hydrolyzed to oxygen and hydrogen. The presence of these 
gases and short-circuited sparks may cause an explosion and damage to the AUV. Therefore, 
fuse boxes are equipped to break and protect the electrical circuit immediately once the AUV is 
shorted. 

 
Figure 16: Wires with fuse boxes 

Vin 
Kill Switch 

M+ 

M- 

Vout: 5V 

Vout: 12V 
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Simple Thrusters Control by PWM Channels from OP5P 
In this project, one of the objectives is to enable control of the AUV’s thrusters through 

the Orange Pi 5 Plus. It is crucial to understand the working principles of AUV’s thrusters first.  
Generally, AUV’s thrusters are brushless (synchronous) motors and are excited by 3-phase DC 
[23]. 

 
Figure 17: Control of a brushless DC motor [23] 

 
When the 3-phase DC powers AUV’s thrusters from the ESCs, their rotating speeds are 

controlled by PWM signals received on the ESCs. The PWM signals are square waves with 
specific switching frequencies and duty cycles. 

 
Figure 18: Electrical diagram of an ESC and a thruster. 

 
 Given the constant input voltage and constant input PWM switching frequency on an 
ESC, the thrusters' rotating speed increases when the PWM signal's duty cycle increases.  
 
 

 
 
 
 
 
 
 
 It is essential to figure out the correct PWM switching frequencies and duty cycles to 
control AUV thrusters correctly. After the investigation by using a servo tester and a portable 
oscilloscope, the operating conditions for the ESCs and the thrusters are shown below: 
 
1. Thrusters will initialize and operate after the ESCs receive PWM signals of 50Hz switching 

frequency (fs) and ~4.5-5% on-state duty cycle (DON). 
2. Thrusters will rotate at maximum after the ESCs receive PWM signals of 50Hz fs and ~10% DON. 

Therefore, the OP5P must reserve two pins to output PWM signals with 50Hz fs and ~5% 
DON to ESCs to initialize before controlling the AUV thrusters. 

 

Computer 
Board 

PWM 
Signals 

ESC Thruster 

Power 
Supply 
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Figure 19: PWM Signal with 50Hz and 4% DON 

 
According to official documentation [24], at most 6 PWM channels are available in the 

OP5P: 
 

 
Figure 20: PWM channels for OP5P [24] 

Pin 16 and Pin 18 are selected for generating PWM signals. Pin 16 (PWM12_M0) is 
connected to the left thruster’s ESC, and Pin 18 (PWM13_M0) is connected to the right 
thruster’s ESC. It is noted that there are some mistakes in the official documentation. 
PWM12_M0 and PWM13_M0 should refer to Pin 16 and Pin 18, respectively. 

 

 
Figure 21: Pin connections for PWM outputs 

 

Servo Tester 

oscilloscope 

(Deprecated in semester 2) 
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Figure 22: GPIO Layout and PWM Pins for OP5P [24] 

 
The 2 pins cannot output the PWM signals before they are activated as PWM channels. 

By setting orangepi-config [24] in Linux, the system reserves the 2 pins to generate PWM 
signals. 

 
Figure 23: orangepi-config 

 After completing the setting, we can follow the official documentation [24] to output 
PWM signals: 

 
Figure 24: Official OP5P Documentation [24] 

 From the above documentation, four shell commands are required to trigger the PWM 
signal: 
 

1. The first command is to write 0 into a Linux file named “export” to enable the PWM channel 
so that it is available for configuration and ready to control. We can treat it as an initialization 
of the PWM channel. 

2. The second command is to write 1/50Hz*1E9=20000000 nanoseconds (ns) as a switching 
period into a Linux file named “period”. 
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3. The third command is to write 1/50Hz*1E9*5%=1000000 ns off-state duty time (TOFF) into a 
Linux file named “duty_cycle”. Therefore, the PWM signal has an on-state duty ratio 
DON=95%. 

4. The fourth command is to write “1” into a Linux file named “enable” to enable the PWM 
output signal. If “0” is written to this file, the PWM output signal is disabled. 

 
It is noted that the 1000000 ns in the third step refers to the off-state duty time (TOFF), but 

not to the on-state time (TON). Therefore, we need to normalize the PWM duty time by: 
 

𝑇𝑇𝑂𝑂𝑂𝑂 =
1
𝑓𝑓𝑠𝑠
∗ 1𝐸𝐸9 ∗ (1 − 𝐷𝐷𝑂𝑂𝑂𝑂) 

 
 To know which pwmchip belongs to which of the pins, we can list out /sys/class/pwm/ 
in the bash shell: 
 

 
Figure 25: Listing pwmchipx 

 
To associate the above variables, such as ‘fd8b0020’ and ‘febf00120’, with specific pins, 

we consult the official documentation to identify which ‘pwmchipx’ corresponds to which pin 
(Figure []). In this example, ‘pwmchip2’ is associated with Pin 16, and ‘pwmchip3’ is associated 
with Pin 18. Consequently, we can create a straightforward Python test script that utilizes the 
previously mentioned shell commands to control AUV thrusters. 

 
Figure 26: Process of PWM Generations for OP5P 

 
 When the program starts, it firstly enables PWM channels in a pin and produces PWM 
signals with 50Hz fs and 5% DON to initialize a thruster. Then, the program asks a user to input 
an on-state duty ratio DON, such as 8%. After inputting, the program calculates a corresponding 
off-state duty time TOFF and writes these values into the Linux files. The OP5P consequently 
generates a PWM square wave with 50Hz fs and 8% DON eventually. 
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Figure 27: PWM signal outputs from the OP5P 

 
 With this approach, AUV thrusters can be controlled manually. A further function named 
thruster_move() is developed to control all AUV thrusters conveniently and would be used in 
the ROS2 development. The logic flow-chart of thruster_move() is shown in below: 
 

 
Figure 28: Flowchart for thruster_move() 

 
 Figure 28 shows that the thruster_move() function has 4 parameters: type of thruster, 
PWM period (nanoseconds), PWM on-state duty ratio DON (%), and time. When it is called, 
it first creates two normalized off-state duty times TOFF (ns) named d_cycle_L and d_cycle_R 
based on the DON parameter and pre-defined offset values, as thrusters may rotate at different 
speeds under the same duty cycle. Then, the function determines the type of thrusters, such as 
“left”, “right”, and “all”. If the type is left, the function calls another function named 
call_bash(), which has parameters of pwmchip2 (indicating Pin 16), period (PWM switching 
period in ns), and duty_cycle_L (normalized TOFF for the AUV left thruster). Once the 
call_bash() is called, it implements similar tasks mentioned in Figure 26 that write 
corresponding PWM parameters into the Linux files. Eventually, the AUV left thruster propels. 
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Figure 29: Flowchart for call_bash() 

 
Similarly, the AUV right thruster propels when the type in thruster_move() is “right”. In 

this case, the thruster_move() calls call_bash() with another group of parameters, such as 
pwmchip3 (indicating Pin 18) and duty_cycle_R (normalized TOFF for the AUV right thruster). 
When the type is “all”, the thruster_move() calls call_bash() twice to propel two thrusters 
simultaneously. 
 
 Apart from these parameters, thruster_move() also provides a time parameter to allow the 
duration of propulsion. For example, if the time parameter “t” is 0, thruster(s) is turned on non-
stop. If t is 5, thruster(s) will be turned off after 5 seconds.  
 
 In conclusion, thruster_move() offers a practical and efficient means of easily controlling 
AUV thrusters. This modular design not only simplifies the integration process but also 
facilitates its application in other systems. Furthermore, it can be seamlessly incorporated into 
subsequent ROS2 development efforts, such as for the more efficient design of an AUV control 
system based on ROS2 nodes. 

 3.1.2 Mechanical System Design 

AUV Frame 
 A simple AUV frame was suggested. It was constructed by laser-cutting and assembled 
with teammates in semester 1. 
 

 
Figure 30: A Simple AUV Frame 

  
Battery Box Design 

 A battery box made of a food box provides a waterproof connector to allow the 4S 
battery to power the AUV. This design improves the AUV’s hull design. 
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Figure 31: A Battery Box  

 
Electronic Components mounting Rack 

 To manage the wiring and stabilize circuit connection, designing a mounting rack for 
electronic components such as the OP5P, the DC-DC converter, and the motor driver is practical. 
 

 
Figure 32: Electronic Components Mounting Rack 

 

3.2 ROS2 Control System Framework 

 3.2.1 Design Ideas from Reverse Proxy 

 Before developing an AUV control system based on ROS2, it is crucial to understand the 
structure of the AUV system designed by other team members. For instance, in this project, the 
AUV system is classified into four subsystems: the control system, the buoyancy subsystem, 
the thruster subsystem, and the autonomous subsystem. The buoyancy subsystem is 
developed as a single node, while the autonomous subsystem is designed as a series of nodes, 
with each node responsible for a specific autonomous task. The AUV control system includes the 
thruster subsystem to directly control the AUV thrusters. This structure helps ensure seamless 
integration and effective collaboration within the development team. 
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Figure 33: Abstracting AUV Subsystems to Nodes 

 
 As mentioned previously in the Background Section, it is more suitable to use the ROS2 
Services interface to process logical operations that require immediate results, such as control 
commands from the autonomous subsystem. Therefore, the control system mainly uses the ROS2 
Services interface to communicate with different nodes. 
 
 Below is a simple example of a ROS2-based control system with a single task node. 

 
Figure 34: AUV Control System on a Single Autonomous Program (Node) 

 
 When the AUV control system uses the ROS2 Services interface to request one of the 

autonomous task nodes, such as Task1 Node (Step 1), the task node receives the request and 
starts to implement autonomous programs. After the processing, the task node responds with 
corresponding control commands for the AUV thruster subsystem and buoyancy subsystem 
(Step 2). When the control system receives the control commands from the response, it 
implements the commands. If the commands require the AUV to “move left”, “move right”, or 
“move forward”, the control system implements the previous thruster_move() function to turn 
on the “right” thruster or “left thrusters” or “all thrusters” respectively (Step 3) to control the 
thruster subsystem. 

 
If the commands also require the AUV to “move upwards” or “move downwards”, the 

control system calculates a new target depth value based on an original depth value and requests 
the buoyancy node with the target depth value (Step 4). When the buoyancy node receives the 
request with the target depth value, it implements corresponding control for the buoyancy 
subsystem to allow the AUV to move to the desired depth (Step 5). After the implementation, 
the buoyancy responds with a success flag to acknowledge the control system in which the task 
is completed (Step 6). After the acknowledgement, the control system finishes the first 
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implementation control cycle and commences the next cycle by requesting the autonomous node 
again. With this approach, the control system can handle commands and control the AUV’s 
movements. 
 
 On the other hand, this framework can only allow a single task node to perform a 
single autonomous task. To tackle this problem, a concept of “reverse proxy” is introduced to 
the framework so that the control system can request commands from various task nodes based 
on specific conditions. 
  

A reverse proxy is a server that sits between client devices and web servers, acting as an 
intermediary for requests [25]. Its primary function is to receive requests from clients, determine 
the appropriate web server to handle them, and then forward them accordingly. This process 
allows the reverse proxy to manage and balance the load on multiple servers, improve 
performance, and enhance security by providing an additional abstraction layer. 

 
Figure 35: Reverse Proxy Flow [26] 

Drawing inspiration from the intermediate connection and forwarding properties of 
reverse proxies, a similar approach is adopted in the design of a ROS2 framework for the AUV 
control system. In this framework, the AUV control system is separated into two nodes: a 
Control Node and a Master Node. The Master Node serves as a central mediator and manager, 
receiving requests from the Control Node and determining the appropriate task node to handle. 
The Master Node then requests to the respective task nodes and manages the subsequent flow of 
responses from the task nodes such as control commands for the Control Node. The Control 
Node is the one that analysis and processes all control commands and converts them as 
movements and actions of the AUV by implementing hardware control. 

 
To make the idea easier to interpret, a “matchstick men” example is illustrated below: 
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Figure 36: Illustration of ROS2-based Nodes for the AUV Control System 1 
  

The “Control Node” matchstick man has strength in controlling the AUV 
hardware, such as the thrusters and the buoyancy. However, he has a few friends (the 
Master Node and Buoyancy Node) and only knows how to control the AUV hardware 
when he receives control commands from others. The “Master Node” matchstick man is a 
socialholic who meets a lot of friends (task nodes and the Control Node). His main job is 
to be an intermediator to help the “Control Node” matchstick man ask the correct “Task 
Nodes” matchstick man (individual autonomous AUV programs) to get a proper 
command. If the Master Node finds a correct “Task Nodes” matchstick man and asks to 
obtain a correct control command, he will tell the “Control Node” matchstick man back. 

 

 
Figure 37: Illustration of ROS2-based Nodes for the AUV Control System 2 

 
 After the “Control Node” matchstick man gets the new control command, he will control 
the AUV thrusters (thruster subsystem) by himself. However, if the control command requires 
the AUV to move vertically (buoyancy subsystem), the “Control Node” matchstick man will 
calculate a new depth value for the AUV and ask the “Buoyancy Node” matchstick man to 
control the buoyancy subsystem. 

 
Figure 38: Illustration of ROS2-based Nodes for the AUV Control System 3 

 
 When the “Buoyancy Node” matchstick man replies to the “Control Node” matchstick 
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man that the implementation is completed, the AUV control system finishes the first 
implementation cycle, and the “Control Node” matchstick man starts to ask the “Master Node” 
matchstick man for a new control command again. 
 
 Therefore, the AUV control system framework for a single implementation cycle is 
represented below: 

 
Figure 39: The ROS2-based AUV Control System Framework 

 
There are 6 nodes in Figure 39. When the Control Node (control_node) requests the 

Master Node (master_node) to get control commands (Step 1), the master_node first 
acknowledges the request and sends another request to the Task 1 Node (task1_node) (Step 2). If 
task1_node has completed its task, it responds with a completed flag and control commands to 
the master_node (Step 3). When the master_node receives the completed flag, it automatically 
abandons the control commands and requests to the next task node, such as the Task 2 Node 
(task2_node) (Step 4). If the task2_node has not yet been completed, it will respond with an 
incomplete flag and control commands to the master_node (Step 5). When the master_node 
receives the incomplete flag from the task2_ndoe, it will treat the control commands as useful 
messages and forward them back to the control_node (Step 6). Eventually, the control_node gets 
the control commands from the task2_node and implements them (Steps 7-10). 

 
Several advantages are realised by adopting a reverse proxy-inspired framework in the 

ROS2-based AUV control system. Firstly, the Master Node acts as a strategic coordinator, 
ensuring tasks are executed in a predetermined sequence. When the Control Node requests a task 
to be performed, the Master Node sends a request to the appropriate task node, such as the Task 
1 Node. Upon receiving a response indicating completion, the Master Node incrementally 
requests the next task node, Task 2 Node, in the sequence, maintaining a controlled flow of 
operations. 

 
This approach not only ensures that the AUV follows a logical and ordered sequence of 

task implementations but also simplifies the Control Node’s responsibilities. The Control Node 
does not need to be aware of the current task number or the state of individual task nodes (the 
autonomous subsystem). It simply needs to communicate with the Master Node, which then 
handles the task distribution and status monitoring. This decoupling allows the Control Node to 
focus on its core function of controlling the thruster and buoyancy subsystem, while the Master 
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Node assumes the role of a sophisticated controller or manager within the AUV control system. 
 
In summary, the reverse proxy-inspired framework streamlines the communication 

between the Control Node and task nodes, providing a structured and orderly execution of tasks. 
It also significantly reduces the complexity of the Control Node, allowing it to concentrate on 
hardware control. At the same time, the Master Node takes on the responsibility of orchestrating 
the data flow and task management within the ROS2 network. 

 

3.2.2 Tree Structure of AUV ROS2 Control System 

 A simplified structure of the ROS2-based AUV Control System is introduced below. 
 

 
Figure 40: File System of ROS2-based AUV Control System 

 
In the ROS2 development, all source files are stored in a folder named “src” under a 

main workspace folder (AUV_ROS2). Under the “src” folder, many package folders are present. 
One package file represents one node, except the “control_interfaces” file, which is used to 
define network interfaces between the nodes. Inside the node folders, Python programs written 
with ROS2 APIs are present. These programs are the main logic of the ROS2 nodes. 

3.2.2 ROS2 Interfaces for AUV Control System 

Customized network interfaces are defined within the "control_interfaces" directory to 
facilitate easy communication and data exchange between various nodes. These interfaces are 
designed to align with ROS2's conventions, enabling nodes to engage in ROS2 service-based 
communication using files like "GetCommand.srv" and "GetTask.srv" under “srv” for 
interactions between the Control Node and Master Node, and between the Master Node and 
various task nodes. Additionally, under the "msg" folder, files such as "AUVStatus.msg" and 
"AUVBuoyancy.msg" are also created to establish ROS2 topics-based communication 
channels. By adhering to the predefined data types within these interfaces, nodes can transmit 
data seamlessly. 
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Figure 41: Customized ROS2 services-based and topics-based interfaces in the AUV 

control system. 

 3.2.3 Functionality of Control Node (control_node) 

 This section introduces the functionality and implementations of the Control Node in the 
AUV control system. The Control Node consists of 3 communication interfaces: one services-
based interface for requesting control commands to the Master Node, one services-based 
interface for controlling the AUV buoyancy subsystem (the Buoyancy Node), and one topics-
based interface for publishing AUV's overall status (the Status Node). 

 

 
Figure 42: Network Interfaces on Control Node 

 
 Since ROS2 utilizes object-oriented programming to develop nodes, a node object and its 
constructor were created to initialize the three network interfaces. 
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Figure 43: Python Constructor for Control Node 

 
Figure 43 illustrates the constructor for the Control Node. The constructor firstly uses 

rclpy APIs to initialize 2 services-based clients and 1 topics-based publisher 
(rclpy.node.create_client, rclpy.node.create_publisher). A rclpy API named timer is used to 
create a timer_callback method. This method is triggered in the backend every 1 second to allow 
the publisher to publish messages periodically. After that, the constructor defines two request 
methods, such as a send_request() method, which requests the Master Node once with specific 
request contents (i.e. get_command = True). When any of these request methods are triggered, 
they will provide a “future” instance that is used to obtain control commands once the server 
returns a response (future.result).  
 

 
Figure 44: Flowchart of Implementation Cycle for Control Node 

 
Figure 44 illustrates an implementation cycle for the Control Node. When the main 

function starts, a Control Node instance is created (Step 1). The timer_callback method is 
therefore activated and publishes the AUV status in the background of the program every 1 
second (Figure 42 and Figure 45). Hence, the Control Node publishes the AUV’s status 
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regularly, and it can be subscribed by any node, such as the Status Node, for various 
applications such as debugging and showing information on the AUV’s display. 

 
Figure 45: Topics Interface between Control Node and Status Node 

 
On the other hand, the main function enters a while-loop (rclpy.ok is True when the node 

is operating normally). In the while-loop, the Control Node first requests the Master Node 
(control_node.send_reuqest method) by sending a Boolean flag get_command=True to tell the 
master node that it is applying a control command (Step 2). The Control Node waits (spins) until 
it receives the response (Step 3). After the Master Node communicates with task nodes, it 
responds with a control command to the Control Node. The control command includes 
information in the form of string variables such as current autonomous task name (task_name), 
directions (thruster_direction: Left/Right/Forward/None) for AUV to move in the aspect of 
the xy-coordinate plane, and directions (buoyancy_direction: Up/Down/Still/Still) for AUV to 
move in the aspect of z-axis underwater. The request-response process is illustrated in Figure 46. 

 
Figure 46: Services Interface between Control Node and Master Node 

 
After the main function in the Control Node receives the control command, it starts to 

analyze and implement it. If the control command requires the AUV to move in the aspect of the 
xy-coordinate plane (Step 4), the Control Node calls the thruster control function 
thruster_move() which is developed in the previous section to establish the movement (Step 
4A). Suppose the control command requires the AUV to move in the z-axis (Step 5). In that 
case, the Control Node calculates a new depth value by a constant increment (i.e. old depth value 



The Hong Kong Polytechnic University  
                       Department of Electrical and Electronics Engineering 

33 
 

+0.1) or decrement (i.e. old depth value-0.1) (Step 5A) and sends a request with a Boolean flag 
modify_depth=True and a floating point number new_depth equivalent to the newest depth 
value to the Buoyancy Node to apply a modification for the AUV’s depth (Step 5B). The 
request-response process is illustrated in Figure 47. 

 
Figure 47: Services Interface between Control Node and Buoyancy Node 

 
When the Buoyancy Node receives the modification to change the AUV’s depth, the 

Buoyancy Node complies with the command and sets a new depth. It then implements its 
programs to adjust the buoyancy subsystem, and finally returns a success flag and a current depth 
value to the control node (Step 5C). Once these steps are implemented, the first implementation 
cycle of the AUV control system is said to be completed. The process continues to repeat until 
the Control Node is shut down manually. 
 

3.2.4 Functionality of Master Node (master_node) 

This section introduces the functionality and implementations of the Master Node in the 
AUV control system. Firstly, the Master Node consists of 2 communication interfaces: one 
services-based interface for requesting control commands from task nodes and one for 
forwarding responses from task nodes to the Control Node. The network interfaces are shown 
below: 

 
Figure 48: Network Interfaces on Master Node 
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Similar to the Control Node, a node object and a constructor are created to initialize the 
network interfaces in the Master Node when the Master Node starts. 

 
 

 
Figure 49: Python Constructor for Master Node 

 
Figure 49 illustrates the constructor for the Master Node. The constructor first uses rclpy 

APIs to initialize a services-based server (rclpy.node.create_service). This serviced-based server 
listens to any request with service type “GetCommand” and service name “get_command”. If the 
Master Node receives the request from the Control Node with the same service type and service 
name, it will implement a callback method named get_command_callback to return a response.  

 
Then, the constructor creates a list named task_nodes, which stores all task nodes’ ROS2 

service names, as each task node contains a unique service name. The unique service name 
identifies each node to be requested or responded to. An integer variable named 
current_node_index is created with a default value 0 by ROS2 Parameters API. This index is 
then used to fetch the service name of the current task node from the task_nodes list. This 
approach enables the Master Node to initialize a service-based client that requests to the 
specified task node for retrieving control commands. If the Control Node sends a request to 
the Master Node, the Master Node utilizes this index to decide which task node the request 
should be routed to. Therefore, the current_node_index plays a crucial role in facilitating the 
communication between the Master Node and the appropriate task node, ensuring that each 
request is directed to the correct destination for task execution (flow control).  
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Figure 50: task_nodes List with Service Names 

 
Take Figure 50 as an example. The first service name to request is “task1”. The Master 

Node will, therefore, create a services-based client with service type “GetTask” and service 
name “task1” to request a task node with the same service type and service name to forward 
control commands to the Control Node. 

 
In addition to the current_node_index variable, a write_response method is created 

within the constructor in the node class. This function accepts multiple parameters, enabling the 
main function to pass variables stored within it to the properties of the node instance. By doing 
so, the get_command_callback method can access response data from the task nodes temporarily 
stored in the node instance. The method then uses the data to formulate a response, which is 
forwarded back to the Control Node. Therefore, the write_response method facilitates the 
communication between the Master Node and the Control Node by providing a means to store 
and retrieve response data, ensuring that the Control Node receives the necessary information to 
proceed with its control operations. 

 
Similar to the Control Node, the send_request method is also created in the constructor to 

request a specified task node. If triggered, it provides a “future” instance used to obtain control 
commands when the task node returns a response (future.result).  
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Figure 51: Flowchart of Implementation Cycle for Control Node 

 
Figure 51 illustrates an implementation cycle for the Master Node. When the main 

function starts, a Master Node instance is first created (Step 1). Then, the main function enters 
into the “rclpy.ok” while-loop. In the while loop, the main function re-updates the service-based 
client with the latest service name, even though the client has already been initialized in the 
constructor (Step 2). The Master Node then starts to listen to any request from the Control Node. 
According to the task_node[] list, the main function implements the send_request method to 
request the first task node (task1_node) with a Boolean flag apply_result=True to the master 
node to tell the task node that it is applying a control command. Then, the Master Node spins to 
wait for the response (Step 3). When the task node receives the request, it implements its 
autonomous programs. After the implementation, the task node responds with a control 
command back to the Master Node. The control command includes information in the form of a 
Boolean flag (is_finished) which represents the status of the task node (True if task is 
completed, and vice versa), and string variables such as current autonomous task name 
(task_name), directions (thruster_direction: Left/Right/Forward/None) for AUV to move in 
the aspect of xy-coordinate plane, and directions (buoyancy_direction: Up/Down/Still/Still) for 
AUV to move in the aspect of z-axis underwater. 

 
After receiving the response from the task node, the Master Node starts to analyze the 

response data. If the Master Node finds that the task has been completed (is_finished = True), the 
main function will increment the current_node_index by 1, indicating the next service name 
should be used (Step 4). The Master Node will re-update the service client with the same 
service type, “GetTask”, and a new service name (i.e. task2) in the subsequent implementation 
cycle so that a new task node will be requested. If the main function finds that the task has not 
been completed (is_finished=False), the main function implements the write_response method 
(Step 5) to store the response data as node’s properties, allowing get_command_callback 
method to read the response in the node’s properties and forward it to Control Node. Once these 
steps are implemented, the first implementation cycle of the Master Node is said to be 
completed. The whole process continues to repeat until the Master Node is shut down. 
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Figure 52: Illustration of Implementation Steps 1-5 

 3.2.5 Simulating Nodes (task1_node, task2_node, buoyancy_node_test) 

 To verify whether the Control Node can request and receive autonomous control 
commands from task nodes through the Master Node, it is essential to develop test methods to 
simulate the control system. Therefore, two simulated task nodes (Task 1 Node and Task 2 
Node) were developed for this project. 
  

 Although the Task 1 Node (task1_node) and Task 2 Node (task2_node) have different 
node names and service names, they share the same structure and function, allowing users to 
input customized control commands to respond to the Master Node. In the constructor's aspect 
(Figure 53), the constructor first uses rclpy APIs to initialize a services-based server 
(rclpy.node.create_service). This serviced-based server listens to any request with service type 
“GetTask” and service name “task1”. When the Task 1 Node receives the request from the 
Master Node with the same service type and service name, it will implement the callback method 
get_task_callback to return a response. Additionally, a write_response method is created to 
allow simulated control commands inputted by users to be stored in the node’s properties, 
allowing the get_task_callback method to read the control commands and respond to the Master 
Node. 

 
Figure 53: Python Constructor for Simulating Task 1Node 
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Figure 54: Flowchart of Implementation Cycle for Task 1 Node 

 
Figure 54 demonstrates the Implementation Cycle for a simulated Task 1 Node. A Task 

1 Node instance is first created when the main function starts. After that, it reads 3 arguments 
from the user input. The first input value refers to a Boolean flag for the task node status 
(Boolean: True/False indicating the task node is completed/incomplete). The second input value 
refers to a control command for the buoyancy subsystem (String: Up/Down/Still indicating the 
AUV moves in the z-axis). The third input value refers to a control command for the thruster 
subsystem. (String: Left/Right/Forward indicating the AUV moves in the xy-coordinate plane). 
With this approach, we can simulate a task node and send control commands to the Control Node 
through the Master Node to control the AUV. 

 

 
Figure 55: Illustration of Functionality of Simulated Task 1 Node 

 
 Additionally, a simulated buoyancy node is developed to receive and respond to requests 
from the Control Node. The simulated buoyancy node is similar to the above task1_node, which 
allows users to input two variables to respond to the Control Node (a Boolean flag: True/False to 
tell the Control Node that the buoyancy task is implemented and a floating point number of the 
current AUV’s depth value read from a pressure sensor. 

 3.2.6 Application of ROS2 Parameters API 

 The ROS2 Parameters API is a powerful feature that allows users to manage and 
configure parameters for their nodes dynamically. Parameters are key-value pairs that store 
configuration data for a node, such as sensor calibration values, control values, or other user-
defined settings. The Parameters API provides a standardized way to set, get, and monitor these 
parameters, making it easier to manage and maintain the configuration of a ROS2 system. 
 
 In this project, ROS2 Parameters API is utilized in the Master Node. The ROS2 
Parameters API establishes the following functions: 
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 1. Launching the Master Node to request task nodes in different orders (startup). 
 2. Switching the Master Node to request indicated task nodes (runtime). 

 
Launching Master Node to Request Task Nodes in Different Orders 

As mentioned previously, the variable “current_node_index” is assigned by the ROS2 
Parameter API which allows users to define a specific value when the Master Node is started up: 

 
self.current_node_index = self.declare_parameter('task_index', 0).value 
 
The above declare_parameter method consists of two parameters. The first parameter is 

the parameter name of the declaration (task_index), and the second parameter is the parameter's 
default value (0). The “.value” at the end is used to retrieve the value of the parameter after it has 
been declared. Therefore, the current_node_index is assigned to 0 by default. 

 
Figure 56: Flowchart of Using ROS2 Parameters API to Start Master Node 

 
Take Figure 56 as an example. When users require the Master Node to request the 

second task node (i.e. task2) firstly, the users can run the following command:  
ros2 run master_node master_node --ros-args -p task_index:=1 

 
to configure the value of “current_node_index”. In this scenario, this command is used to run a 
ROS2 node named “master_node” from a package also named “master_node”, and it includes a 
ROS argument (--ros-args) that sets the value of a parameter (-p) named task_index to 1 
(task_index:=1) when the node starts. Therefore, the “current_node_index” would be assigned 
to 1, and the Master Node would request the task node with the services name “task2” 
(task_nodes[1] = “task2”) according to Figure 50. 
 

If the users start the Master Node without inputting arguments: 
ros2 run master_node master_node 

Since the “current_node_index” is assigned to 0 by default, the Master Node will request the task 
node with the service name “task1” instead of “task2” (task_nodes[0]= “task1”). 
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Figure 57: Flowchart of Starting Master Node by Default 

 
Figure 58: Illustration of Functionality of ROS2 Parameters on Master Node. 

 
Therefore, the Master Node’s requesting order can be configured by using the ROS2 

Parameters API when it is started up. The AUV can implement autonomous tasks in different 
orders according to the operators’ requirements. 
 

Switching Master Node to Request Indicated Task Nodes at Runtime 
 
 Apart from using the ROS2 Parameters method to configure the Master Node at startup, 
users can also configure the value of “current_node_index” at runtime, which will automatically 
update the corresponding task node that the master node should communicate with.   
 

To establish this function, we can use a ROS2 API method 
“add_on_set_parameters_callback(parameter_callback)” to register a callback function that 
will be triggered whenever a parameter is changed. In this case, a callback function named 
“parameter_callback” is created. When the value of the parameter “task_index” is modified at 
run time by inputting the command: 

“ros2 param set /master_node task_index [value]”, 
the callback function will assign the “current_node_index” with the new value. This function 
allows for dynamic reconfiguration of the Maste Node without the need to restart it, enhancing 
the flexibility and robustness of the system. 
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Figure 59: Flowchart of Using ROS2 Parameters API to Configure Master Node’s Requesting 

Order at Runtime 
 
 In conclusion, the ROS2 Parameters API is a valuable tool for managing and configuring 
nodes in a ROS2 system. The main benefit of using the ROS2 Parameters API is the ability to 
dynamically configure and reconfigure nodes at startup and runtime. This means that users can 
change the behaviour of a node without needing to restart or rebuild the program, which can be 
particularly useful during development and testing for the AUV’s autonomous programs, as the 
implementing order for autonomous programs can be altered dynamically. 

 3.2.7 Application of ROS2 Launch Method 

 After the ROS2 nodes for the AUV control system are developed, it is difficult to start 
these nodes one by one (one Linux terminal per node). Therefore, the ROS2 Launch method can 
be used to start all nodes in one command. The ROS2 Launch method requires developers to 
configure a list of ROS2 nodes to launch. In this configuration, it is needed to configure the 
package name of the node, the node name, and the argument of the node.  

 
Figure 60: Example of ROS2 Launch Configuration 

 
 Once the ROS2 Launch is configured, all desired ROS2 nodes can be theoretically 
launched in a command: 

ros2 launch start_auv auv.launch.py 
 

 However, since it is found that the Control Node requires root permissions to manipulate 
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PWM hardware control in the OP5P and the /root/.bashrc file does not take effects to source the 
ROS2 setup files, a simple shell script was created to start the AUV system as the root user in 
Linux: 
 

 
Figure 61: Developing a Shell Script to Launch ROS2 Nodes in Root Environment 

 
Figure 62: Demonstration of ROS2 Launch 

   
 Consequently, The OP5P can start all ROS2 nodes in the root environment. The AUV 
control system starts to read commands from the autonomous subsystem and manipulate the 
thruster and buoyancy subsystems. 

 3.2.8 Frequency Control in Control Node 

The Control Node plays a pivotal role in coordinating and managing the various 
subsystems of an underwater vehicle, particularly the buoyancy subsystem. The buoyancy 
subsystem, crucial for the vehicle’s vertical movement, must be controlled with precision to 
ensure stable and reliable operation. However, the physical nature of buoyancy adjustments 
introduces inevitable delays and inertia, which must be accounted for in the Control Node’s 
design. 
 

To address this challenge, the Control Node incorporates a frequency control mechanism. 
This strategy ensures that buoyancy adjustment commands are not sent to the buoyancy node 
with every cycle but after every fifth cycle (~3-4 seconds). This delay is intentional and designed 
to allow the buoyancy system sufficient time to process the previous command and exhibit the 
desired physical change. 
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Figure 63: Illustration of Frequecy Control in Control Node 

 
Take the block diagram in Figure 64 as an example. A variable named 

buoyancy_count=0 is initialized in the constructor of the Control Node. When the Control Node 
determines whether it is needed to move in the z-axis (Step 5), it checks the value of the 
buoyancy_count first. If the buoyancy_count is smaller than 5, it is incremented by 1, and the 
Control Node skips requesting the Buoyancy Node to apply for modifying a depth change. The 
Control Node therefore ends the current implementation cycle and starts a new cycle. On the 
other hand, if the buoyancy_count is equal to or greater than 5, the Control Node determines to 
process control commands for the buoyancy node and request to the buoyancy_node. After that, 
the Control Node resets the buoyancy_count to 0 before starting a new implementation cycle.  

 

 
Figure 64: Flowchart of Frequency Control in Control Node 

 
As a result, the Control Node only deals with the buoyancy’s control commands every 5 

cycles with this approach, establishing the frequency control mechanism to allow the buoyancy 
subsystem sufficient time to behave. 

 3.2.9 Response Control in Master Node 

Gate Control in get_command_callback Method 
 In the previous section, we mentioned that ROS2 Services callback methods, such as the 
get_command_callback in the Master Node and the get_task_callback in task nodes, will be 
triggered if servers receive requests. However, these callback functions need to be implemented 
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in an orderly manner. For example, the get_command_callback method should not be 
implemented to respond to the Control Node until the get_task_callback methods in task nodes 
are implemented to respond to the Master Node. Otherwise, the Master Node may respond with 
incorrect or outdated control commands to the Control Node. 
 

 
Figure 65: Implementing Order between get_command_callback and get_task_callback method 

 
 To solve this problem, a “start” flag is defined in the Master Node (Figure 66). This flag 
acts as a control gate to determine whether the Master Node is allowed to respond to the Control 
Node.  
 

 
Figure 66: Gate Control in get_command_callback Method 

 
 With this approach, we can enable the Master Node to respond to the Control Node only 
when it has received the response (control commands) from task nodes.  
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Figure 67: Flowchart of Enabling get_command_callback method to Returrn Reponse 

 
 In the get_command_callback() method, it freewheels by a while-loop to wait until it 
detects True in the “start” flag. Once the “start” flag is True, the method reads the node 
instance’s properties (control commands), responds (forward) them to the Control Node, and 
switches the “starts” back to False. 
 

 
Figure 68: Flowchart of Gate Control in get_command_callback method 

 With this approach, the Master Node can respond with the latest control commands to the 
Control Node. The Control Node would not receive any outdated control commands. 
 

Possible Request Lose in ROS2 
In this ROS2-based control system for the AUV, it is found that the Master Node may 

fail to receive responses from the task nodes every ~1000-1500 implementation cycles. The 
reason behind it is still figuring out. However, this results in infinitely waiting in the Master 
Node, which is disabled to respond to the Control Node owing to a False Boolean status of the 
“start” flag. The Control Node, therefore, is also waiting for the Master Node to implement 
control commands and commence the next implementation cycle. 

 

 
Figure 69: Possible Request Lose in ROS2 

 Therefore, we design an if-statement control logic to reset the response if the 
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get_command_callback method has freewheeled for 5 times (0.1*5 = 0.5 seconds), as it is 
assumed that the task nodes should respond to the Master Node within 0.5 seconds. If the 
callback method has freewheeled 5 times, the system will automatically respond with a dummy 
message with control commands thruster_direction: None and buoyancy_direction: Still to 
the Control Node to allow the AUV to do nothing. Once the Control Node receives the control 
commands, it can directly start the next cycle and continue to request to the Master Node. The 
Master Node will request the specified task node again and try to retrieve responses from it. As a 
result, the communication inside the AUV control system will probably be recovered.  
 

3.3 Non-ROS2 Testing and Commissioning Methods for AUV 

 3.3.1 Thruster Control by Infra-red Remote Control 

Before testing the AUV autonomous system, designers need to test and commission the 
AUV’s electrical system intuitively, such as offsetting the AUV thrusters’ operating duty cycles. 
Therefore, an infrared (IR) control approach is designed to test the AUV’s thrusters. 
 

To test the AUV thruster’s speeds, we can design a program that uses an infrared remote 
control to control thrusters intuitively. The advantage of using infrared remote control is that IR 
signals can be received well underwater while Wi-Fi signals are almost absorbed by water. This 
idea will help test the AUV before implementing the autonomous programs. 
 
 

 
 
 

 To control the OP5P by IR signals, an IR remote control for the OP5P is used. 
According to the official documentation, the OP5P can read key values from the IR remote 
control by running Event Test (evtest) in the Linux terminal. 
 

 
Figure 70: IR remote control and outputs of Event Test in Linux 

 
 Therefore, we can design a Python program to read these outputs. For example, we can 
use the Python library evdev [27] to read which of the button keys users have pressed: 
 
If the “1”, “2”,  and “up” keys are pressed on the IR remote control, the Linux terminal outputs 
the corresponding key values: 

IR Remote 
Control 

Orange Pi 5 
Plus 

thruster_move() Output PWM Signals/ 
Control Thrusters 
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Figure 71: Read IR signal by Python 

 
 With this approach, a Python program is developed to control the AUV thrusters using 
the IR remote control. This Python program also utilizes the evdev library to read the key values 
the OP5P received from the IR remote control.  
 

 
Figure 72: Flowchart of IR Remote Control Method 

 
Take Figure 72 as an example. Firstly, when the user presses a button on the IR remote 

control, the controller sends a signal to the OP5P. Once the OP5P receives the IR signals, the 
Python program captures the key value associated with the signal. The program then employs a 
case-match statement to map different key values to specific actions. These actions may include 
selecting PWM channels on the OP5P and increasing or decreasing the PWM duty cycles on 
these channels, thereby controlling the speed of the AUV’s thrusters.  

 3.3.2 6-bit Telecommunication 

 Apart from the IR remote control method, it is also necessary to study possible solutions 
to remotely control the AUV, such as controlling the thruster system, the buoyancy system, and 
ROS2 nodes. Therefore, a simple simplex 6-bit telecommunication method is developed in this 
project. 

 
The 6-bit telecommunication is inspired by an online submarine project [28], which used 

a submarine toy’s remote control (transmitter) and the toy’s receiver to implement the remote 
control of a LEGO submarine. In this project, the receiver operates at 27MHz and has 6 output 
signals, which originally are referred to as “forward”, “backward”, “left”, “right”, “surface”, and 
“dive”. These output signals from the receiver have voltages of around 3.3VDC. Therefore, the 
receiver’s output signals can be read by Pico/ESP32/Arduino’s GPIO pins directly. After 
receiving these signals, they can be converted to an integer by bit shifting.  
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Receiving End 

 
Figure 73: Flowchart of Converting Recceived Signals to an integer 

 
 Connecting the receiver with a Raspberry Pi Pico as an example, when the Pico starts, it 
will declare a byte “Y” and initialize GPIO Pin 1-6 as a low-level input source. When the loop 
starts, the Pico reads the first pin first. If the 27MHz receiver outputs HIGH to the first pin, then 
the program executes 1<<1 to “Y”, resulting in “00000001”. After that, the program reads the 
second pin. If the 27MHz receiver outputs HIGH to the second pin, then the program executes 
1<<2 to “Y”, resulting in “00000011”. The process continues until Pico finishes reading the last 
pin. If the resultant “Y” is “00100111”, then the Pico sends a value of 39 by Serial.println(Y), 
which the OP5P then receives through the USB UART Serial. For example, the OP5P can 
receive 37 by directly reading /dev/ttyACMx or /dev/ttyUSBx in Linux. After receiving the 
value from the receiver, the OP5P can implement additional tasks based on it or shift back the 
byte to look up which of the Pico’s Pins is high level, for example, implementing a loop for 
((00100111 >> i) & 1 where 1<=i<=6). On the other hand, the OP5P can implement 
corresponding tasks if it receives the same value (i.e. 37) more than 5 times, as it can determine 
whether the received signal is valid. 
 
Transmitting End 
 
 On the transmitting end, we can directly press buttons of the 27MHz remote control to 
telecommunicate with the AUV’s system. However, this approach is inconvenient and 
ineffective in pressing the buttons continuously. Therefore, we can connect the polarities of the 
remote control’s buttons to 6 controllable relays and use an Arduino to trigger the “press” action. 
For example: 
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Figure 74: Circuit Connection in Transmitting End of 27MHz Remote Control 
 

 An Arduino with a keypad is used for users to press buttons (i.e. 1-9). The Arduino is 
responsible for processing signals from the keypad’s pressed buttons and then turning on 
corresponding relays to short-circuit the buttons on the 27MHz remote control to transmit 
signals. With this approach, the telecommunication between the users and the AUV is more 
stable and convenient. 
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4. Results 

 4.1 Demonstration of ROS2 Control System Framework by Simulating Nodes 

  4.1.1 Demonstration of ROS2 Services between AUV Control System Nodes 
and Single Task Node 

 In this section, a basic ROS2-based control system for AUV demonstration is presented. 
This demonstration verifies whether the Control Node and the Master Node (AUV control 
system) can function to interact with a simulated task node so that the Control Node can 
correctly receive control commands from the simulated task node through the Master Node and 
implement them. The demonstration also presents the frequency control in the Control Node and 
the freewheeling control in the Master Node. The following diagram illustrates the whole steps 
of one implementation cycle for the AUV system in this demonstration. 

 

 
Figure 75: Demonstration of ROS2 Services between AUV Control System Nodes and Single 

Task Node 
 

 Firstly, a simulated task node named task1_node was started by running:   
ros2 run task1_node task1_node False Down Left 

(ros2 run package_name node_name arguments) 

 

Figure 76: Launching a Simulated Task 1 Node 

 Three arguments were declared in the task1_node. The “False” represents the incomplete 
status of the current task so that the Master Node would request to this node continuously. The 
“Down” represents the control command for the buoyancy system so that the Control Node 
would request the Buoyancy Node with a decreased depth value. The “Left” represents the 
control command for the thruster system so that the AUV’s right thruster would propel to turn 
the AUV to the left. After the task1_node was started, its service name “task1” was output. 
 
 Secondly, a simulated buoyancy node named buoyancy_node_test was started by 
running: 

ros2 run buoyancy_node buoyancy_node_test True 5 
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Figure 77: Launching a Simulated Buoyancy Node 

 Two arguments were declared in the buoyancy_node_test. The “True” represents a 
simulated result of the successful status of the AUV buoyancy system that has modified the 
depth value requested by the Control Node. The value of “5” represents a simulated result of the 
current AUV depth value read from a pressure sensor. 

Then, a Master Node (master_node) was started by running: 
ros2 run master_node master_node 

 

Figure 78: Output Result in Master Node at startup 

 From the above figure, it is observed that the master_node started to request to the first 
task node by default (service name: “task1”) (Step 2), and the master_node successfully 
retrieved control commands from the task1_node (Step 3). The master_node acknowledged that 
the task1_node was incomplete, so it continues to request the task1_node. 
 

Lastly, a Control Node (control_node) was started by running: 
ros2 run control_node control_node 

 

Step 2 

Step 3 

Initialize thrusters 

Step 1
 

Step 4 

Step 5 



The Hong Kong Polytechnic University  
                       Department of Electrical and Electronics Engineering 

52 
 

Figure 79: Output Result in Control Node (thruster subsystem) 

 In Figure 79, the control_node initialized the OP5P’s PWM channels first. Then, it called 
the thruster_move function to generate PWM signals with a period of 20000000ns (50Hz fs) 
and 4.5% DON to initialize the AUV thrusters. After the initialization, the control_node started to 
request to the master_node (Step 1) and successfully retrieved control commands from the 
Master Node (Step 4). As the control_node received a command to move left, it called the 
thruster_move to turn on the AUV right thruster to propel (Step 5). 

 

 

Figure 80: Output Result in Control Node after Launching (buoyancy subsystem) 

In the aspect of the frequency control (Figure 80), the control_node only requests the 
buoyancy_node to change behaviours of the buoyancy system every ~3-4 seconds. Taking the 
above figures as an example, when the control_node determined to request the buoyancy_node 
after completing the control for the thruster system, it first calculated the latest depth for the 
AUV. As the task1_node required the AUV to move down, the control_node calculated a new 
depth value by decreasing the AUV depth by 0.1 meters (i.e. 0-0.1=-0.1 meters). Then, it 
requested the buoyancy node with the service name “change_depth” and the new-calculated 
depth value (Step 6). After that, the control_node received the response from the 
buoyancy_node, telling the control_node that the implementation status was successful and the 
current depth read from a pressure sensor is 5 meters (simulated response)(Step 7-8). Ultimately, 

 

 

Calculation 

Step 6 

Step 8 
~3.5s 
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the control_node started the next implementation cycle and continued to request the master_node 
to retrieve control commands.  

Since the control_node had already requested the buoyancy_node for once, it would 
temporarily not proceed with any requests for the buoyancy system for followed few control 
cycles. After the few control cycles were implemented, the control_node determined to calculate 
a new AUV depth (-0.1-0.1=-0.2 meter) again according to the control command (Down) and 
requested the buoyancy_node again. Eventually, the buoyanc_node received requests from the 
control_node every ~3.5 seconds. The control frequency can be adjusted to fit the physical 
change of the AUV buoyancy system by modifying the buoyancy_count in the control_node. 

 

Figure 81: Output Result in Buoyancy Node after Launching 

In the aspect of the freewheeling control in the Master Node (Figure 82), the Master 
Node successfully recovered the communication by automatically responding with a dummy 
control command (thruster_direction: None, buoyancy_direction: Still) to the Control Node 
when the Master Node lost responses from the task node. Taking the below figure as an example, 
when the master_node encountered freewheel for more than 0.5 seconds, it automatically 
responded with a dummy control command to the control_node to start a new control cycle. With 
this approach, the master_node would not be stuck and block the overall system’s operations, 
and communications within the nodes would be recovered automatically. Therefore, the AUV 
control system is stabilized and more robust. 

 

Figure 82: Freewheeling in Master Node 

 

~3.5s 

Freewheeling 
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Figure 83: Communication Recovery between Control Node and Master Node 

 
 

 
Figure 84: rqt_graph showing all running nodes 

  4.1.2 Demonstration of Flow Control in Master Node 

 In this section, flow control in the Master Node is demonstrated. The flow control allows 
the Master Node to be directed to the correct destination for requesting control commands. For 
example, when the first task node (task1_node) is completed, the Master Node can determine to 
switch to request the second incomplete task node (task2_node) and forward control commands 
to the Control Node. The following diagram illustrates the whole steps of one implementation 
cycle for the AUV system in this demonstration. 

 
Figure 85: Demonstration of Flow Control in Master Node 

 
 Firstly, a simulated task node task1_node was started by running:   

ros2 run task1_node task1_node Ture Up Right 
 

Dummy 
response 

Recovery 
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Figure 86: Launching a Simulated Task 1 Node 

 
 This command launched a task1_node, which had already completed the autonomous 
task (True). However, as the autonomous program was still implementing behind the node, it 
would continue to respond with meaningless control commands to the Master Node 
(buoyancy_direction: Up; thruster_direction: Right). 
 
 Secondly, a simulated task2_node was started by running: 

ros2 run task2_node task2_node False Still Forward 
 

 
Figure 87: Launching a Simulated Task 2 Node 

 
 This command launched a task2_node which had not completed the autonomous task 
(False). The task2_mode would also respond with control commands to the Master Node 
(buoyancy_direction: Still; thruster_direction: Forward) 
 

Thirdly, a Master Node (master_node) was launched. 

 

Figure 88: Output Result in Master Node at Startup 

From the Figure 88, the master_node first requested the task1_node (Step 2). Then, the 
Master Node received a response from the task1_node (Step 3). The Master Node could 
acknowledge that the task1_node was completed and determined to request the next task node 
(task2_node) (Step 4). Hence, the master_node received responses from the task2_node (Step 5). 

Step 2 

Step 3 

Step 4 

Step 5 
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Figure 89: Output Result in Control Node at Startup 

 In the aspect of the control_node, it was receiving the control commands from the 
task2_node (Step 6) after requesting (Step 1), indicating that the master_node was able to 
establish the flow control and was forwarding correct control commands to the control_node. 

 

Figure 90: rqt_graph showing all running nodes 

  4.1.3 Demonstration of Master Node with ROS2 Parameters 

As previously discussed in the methodology section, the ROS2 Parameters API offers 
developers a convenient mechanism for modifying and updating node configurations. This 
section showcases the application of this API in switching to request task nodes within the 
Master Node. The following diagram illustrates the whole steps of one implementation cycle for 
the AUV system in this demonstration. 

 
Figure 91: Demonstration of Master Node with ROS2 Parameters 

Step 1 

Step 6 
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 Firstly, a new simulated task1_node was started by running: 

ros2 run task1_node task1_node False Still Left 

 

Figure 92: Launching a Simulated Task 1 Node 

 Then, a new simulated task2_node was started by running: 
ros2 run task2_node task2_node False Down Left 

 

Figure 93: Launching a Simulated Task 1 Node 

 A master_node was started by running: 
ros2 run master_node master_node --ros-args -p task_index:=1 

 

Figure 94: Output Result in Master Node after Launching 

 From the above figures (Figure 92-94), it is observed that the Master Node requested 
task2_node instead of task1_node at startup. Therefore, this demonstration proves that the ROS2 
Parameters API took effects on assigning the value (1) of the task_index to the 
current_node_index so that the Master Node looked up to the second service name in the 
task_nodes list (task_nodes[1]= “task2”) to implement requests. If users require the Master 
Node to request to the task1_node during the AUV operation, they can run the following 
command to establish the manipulation: 

ros2 param set /master_node task_index 0 
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Figure 95: ROS2 Parameters Set Command 

In Figure 96, the Master Node was hot-switched to request the task1_node at runtime 
since we used the ROS2 Parameters setting command to override the value of the task_index to 
0. When the task_index was modified, the parameter_callback method was also triggered. This
method reassigned the current_node_index by the task_index. Therefore, the Master Node was
switched to request task2_node (task_nodes[0]= “task1”).

Figure 96: Output Result in Master Node after ROS2 Parameters Reconfiguration 

With this approach, the AUV can be switched manually to implement different 
autonomous tasks repeatedly or reattempt failed autonomous tasks. Therefore, the ROS2 
Parameters API brings considerable advantages in controlling the AUV. 

Figure 97: Figure 84: rqt_graph showing all running nodes 

4.1.4 Demonstration of Launching AUV by ROS2 Launch 

Once the ROS2-based control system for the AUV is proven to work, ROS2 Launch 

Step 2 

Step 3 

Step 4 

Step 5 

parameter_callback 
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helps start all necessary nodes in one terminal to simplify the ROS2 deployment in the AUV. 
Taking the ROS2 Launch configuration provided in the Methodology section as an example, it is 
observed that the terminal displayed all loggings of the operating AUV nodes. 

Figure 98: Using ROS2 Launch to start up nodes and their configurations 
Figure 99: Using ROS2 Launch with a shell script 

Therefore, utilizing ROS2 Launch is beneficial for debugging all nodes within the AUV 
subsystems and offers a convenient way to initiate the entire AUV system in practical application 
scenarios. 

Figure 100: rqt_graph showing all running nodes 

4.1.5 Demonstration of Status Node 

After all nodes are launched by ROS2 Launch, it is also appropriate to monitor the 
AUV’s status in a more friendly manner. As mentioned previously in the Methodology section, 
the Control Node also consists of a topics-based interface to publish information such as the 
received control commands and the AUV’s current depth. Therefore, the Status Node is 
developed to subscribe to the information to allow users to monitor the behaviors of the AUV. 
The Status Node only consists of a topics-based interface to subscribe to a topic with the topics 
name “AUV_status”. 

To launch the Status Node, simply running: 
ros2 run status_node status_node 
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Figure 101: Output Result of Master Node at Startup 

 
 From the above figure (Figure 101), the Status Node displayed necessary information 
about the AUV system, such as the current control commands required by the task node, the 
buoyancy depth to be set, and the current depth value of the AUV. Given the simplicity and 
clarity of the terminal output, displaying this node on the AUV’s internal screen can significantly 
enhance the efficiency of testing and commissioning for the AUV, ensuring that the AUV is 
functioning as intended and allowing operators to intervene if necessary. 

 
Figure 102: rqt_graph showing all running nodes and an arrow indicating ROS2 Topics interface 

 

4.1.6 ROS2 Network between Orange Pi 5 Plus and Raspberry Pi 

The ROS2 framework enables seamless communication between different ROS2 nodes 
across multiple computing devices on the same network. In the context of this project, the OP5P 
acts as the master device, responsible for running the Control Node, the Master Node, and 
several task nodes. Simultaneously, the RPi is assigned to operate the buoyancy node. This 
configuration provides substantial benefits, with the OP5P offering substantial computing power 
to execute autonomous programs and manage the AUV system, while the RPi leverages its GPIO 
pins and mature control libraries to control the buoyancy subsystem. 
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With this approach, team members utilizing the RPi for developing the buoyancy system 
are not required to port their code to the OP5P platform.  Instead, the RPi can communicate 
directly with the OP5P over the ROS2 network, allowing for seamless control of the AUV. This 
setup exemplifies a master-slave relationship, where the OP5P and RPi can interact 
harmoniously within the same IP segment, with the OP5P acting as a bridge to assign an IP 
address to the RPi. Therefore, the ROS2 network enhances the AUV system’s flexibility and 
scalability, enabling efficient distribution of tasks across diverse hardware platforms. 
 

 
Figure 103: Ethernet Connection between Raspberry Pi and Orange Pi 5 Plus 

 

 
Figure 104: Control System Nodes Running on Orange Pi 5 Plus 
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(ROS2 installed) 
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Figure 105: Buoyancy Node Running on Raspberry Pi 

From the above figures (Figure 104-105), the first display represents the OP5P running 
task nodes (autonomous programs), the Master Node, and the Control Node, while the second 
terminal represents the Raspberry Pi running the Buoyancy Node and executing functions to 
control its GPIO as well as the buoyancy system. This demonstration showed that ROS2 nodes 
can be run on separate devices and communicate with each other under the same network. 

4.2 Demonstration of IR Remote Control for Controlling AUV’s Thrusters 

In the previous section, we discussed the importance of developing test methods to 
counteract the rotating speed of the AUV’s thrusters to prevent the AUV from deviating from its 
intended path due to inconsistent thruster speeds. This section demonstrates the use of an 
infrared (IR) remote control to control the speed of the AUV’s thrusters. 

In this program, the process is as follows: 

Figure 106: Control Process for IR Remote Control 

First, a key on the IR remote control was pressed to select the specific AUV thruster to 
control. For instance, pressing the “2” key would select the AUV right thruster’s PWM channel. 
Once the right thruster was selected, the users pressed the “up” or “down” key to adjust the 
pulse-width modulation (PWM) duty cycle of the OP5P by increments of 0.2%. This 
corresponded to a change in the PWM duty cycle the ESC received as well as the thruster speed. 
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Figure 107: IR Remote Control on increasing the rotating speed of the AUV right thruster. 

 

 
Figure 108: Adjusting the AUV thruster’s speed by pressing the “UP” and “Down” 

button on IR remote control 
 

Using this method, the operator can finely offset the speed of each thruster 
independently, ensuring that the AUV maintains its trajectory and does not experience drift due 
to imbalanced thrust. This precise control is crucial for navigating the AUV through complex 
underwater environments and executing complicated tasks. A detailed demonstration will be 
provided during the project demonstration. 

 

4.3 Demonstration of 6-bit Telecommunication 

 In the 6-bit telecommunication control, an Arduino was connected to a keypad to allow 
users to select input numbers, and the Arduino would continuously “press” buttons on a 27MHz 
controller by turning on a relay to short-circuit the buttons so that constant signals were 
transmitted. This approach ensures that the buttons are pressed continuously, and therefore, the 
27MHz receiver would not receive unstable or misleading signals. 
  
 When the 27MHz receiver received the signals, another Arduino proceeded to convert the 
signals to a byte or an integer. Then, the Arduino would display the value with an SSD1306 
display and transmit the value as a string to computers such as the OP5P through USB UART 
serial communication. 
 
 Take the below as an illustration. When the number “1” was pressed on the keypad, the 
Arduino on the transmitter side received the command and then continuously turned on the first 
relay. Therefore, one of the buttons in the 27MHz transmitter was short-circuited and it triggered 
a “press” action to activate the transmitter to send signals continuously. When the 27MHz 
receiver received the signals, one of the six outputs became high-level. When the Arduino on the 
receiver side read the six outputs in the GPIO, it counted the high-level and converted the signals 
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to a byte. Eventually, the byte value of 59 was displayed on an SSD1306 OLED display. 

 
Figure 109: Pressing “1” on Keypad and Receiving End Displays “59” 

 When the button “2” was pressed on the keypad, the Arduino on the transmitter side 
turned off the first relay and turned on the second relay, resulting in another button being pressed 
continuously on the transmitter. Therefore, the receiver received another constant signal, and the 
converted value (byte) was 58 on the receiver end. 

 
Figure 110: Pressing “2” on Keypad and Receiving End Displays “58” 

 Similarly, when the button “3” was pressed on the keypad, the receiver received another 
constant signal and the converted value was 51. 

 
Figure 111: Pressing “3” on Keypad and Receiving End Displays “51” 

 
 With this approach, the buttons 1-6 on the keypad would turn on 6 relays respectively, 
resulting in 6 constant signals being transmitted to the receiver and 6 respective values 
converted. Therefore, the OP5P or the AUV control system can utilize the 6 values to implement 
various functions, such as switching the requesting order between the Master Node and the task 
nodes. A detailed demonstration will be provided during the project demonstration. 
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4.4 Demonstration of AUV Control System in Real AUV 

Since the buoyancy subsystem developed by teammates was considerably difficult to 
commission individually and some electronic components for the buoyancy subsystem, such as 
the depth sensor and the MPU6050 gyroscope were malfunctioning and unstable after an 
accident of water leakage during the testing, the integrations between the AUV control system 
and the buoyancy subsystem was not able to be demonstrated eventually. However, the ROS2-
based AUV control system successfully demonstrated executing control commands from 
simulated task nodes to control the thruster subsystem in the AUV.  
 
 For example, during the real test, the Control Node was able to execute the control 
commands from the simulated task nodes (autonomous programs) to move forward and turn left 
and right accordingly. The Master Node was also able to select the correct task nodes to forward 
the control commands to the Control Node. Furthermore, the real task nodes (autonomous 
subsystem) could also successfully transmit control commands to control the AUV hardware 
through the control nodes, although the autonomous programs could not reveal their 
functionality owing to space constraints in the laboratory. However, the real AUV underwater 
test could prove that the program demonstrations for the ROS2-based developed AUV control 
system in the above sections (Section 4.1.1-4.1.3) are effective and confident in handling 
autonomous program control commands to control the hardware system of the AUV. 
 

 

 
Figure 102: Demonstration of AUV Underwater with ROS2 Control System 

 
A detailed demonstration will be provided during the project demonstration. 
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5. Discussion

5.1 Analysis of Results 

Upon completion of this project, a robust AUV control system was successfully 
developed, enabling the AUV’s subsystems to effectively process commands from autonomous 
programs and manage the vehicle’s hardware and behaviors accordingly. For instance, both the 
thruster subsystem and the buoyancy subsystem correctly received control commands from the 
autonomous subsystem. Within the AUV control system, the master node functioned as a 
“reverse proxy,” appropriately requesting task nodes and forwarding control commands to the 
relevant control nodes. Moreover, the AUV control system facilitated a manual override feature, 
allowing operators to switch between autonomous tasks as needed. The project also implemented 
various ROS2 launch configurations, ensuring a seamless one-click startup for the entire AUV 
system. In terms of the AUV’s electrical architecture and essential underwater mechanisms, the 
selected battery met the power requirements of the AUV, while the DC-DC converter provided 
stable voltage regulation. The designed frame, 3D-printed mounting rack, and battery box 
contributed to the AUV’s stable operation underwater. 

 Overall, the project successfully achieved its initial objectives and project goal, which 
was the development of an AUV hardware and control system utilizing ROS2. The outcomes of 
this project lay a solid foundation for further advancements in autonomous underwater vehicle 
technology. 

5.2 Limitations and Weaknesses 

Despite the successful development of the AUV control system, several limitations and 
weaknesses were identified during the project. One significant concern is the potential for lost 
responses between the Master Node and the autonomous task nodes within the ROS2 control 
system. Although the project incorporated compensation methods to recover communication 
between the control system nodes, the resulting latency led to time consumption and unnecessary 
expenditure of the AUV’s power and computational resources. This highlights the need for 
further research into how to prevent response loss, which could significantly improve the 
efficiency and performance of the control system. 

Figure 103: Potential lost responses in the AUV Control System 
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Another limitation pertains to the interface used for communication between the 
buoyancy node and the control node. The current ROS2 services-based interface, which employs 
frequency control to manage the buoyancy subsystem, is suboptimal. This approach requires 
developers to manually adjust the buoyancy_count to match the required timing for buoyancy 
adjustments.  

Therefore, a more effectively improved solution would involve an actions-based 
interface. With actions, the buoyancy node could provide real-time feedback on the AUV’s 
current depth to the Control Node, allowing the Control Node to automatically wait until the 
AUV reaches the desired depth before commencing the next implementation cycle. This would 
enhance the responsiveness and precision of the AUV’s buoyancy control, which is crucial for 
the AUV’s overall performance and safety. 

Figure 104: Utilizing ROS2 Actions-based interface between Control Node and 
Buoyancy Node 

5.3 Suggestions for Improvement: 

Apart from the AUV control system, the proposed 27MHz telecommunication method 
can also be embedded in the ROS2 system to allow extra functionality. For example, the 
operators can send requests to the AUV ROS2 nodes to establish certain behaviours, such as 
switching autonomous tasks and changing configurations for task nodes, etc., through 
telecommunication. This method can be developed by allowing the OP5P to read received 
control bytes from the 27MHz receiver directly (GPIO) or through the RPi Pico’s UART 
communication. Hence, the OP5P implements different request actions for different nodes based 
on the control bytes. 

Figure 105: Embedding 27MHz Telecommunication in ROS2 Control System 
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6. Conclusion

6.1 Project Achievements 

 This project has successfully developed a hardware system for an autonomous 
underwater vehicle (AUV), which includes the electrical architecture and essential mechanisms 
for underwater functionality. The AUV control system, built on ROS2, effectively utilizes ROS2 
client library APIs to establish a robust communication layer for the AUV’s subsystems, such as 
the autonomous, buoyancy, and thruster subsystems, although the autonomous subsystem and the 
buoyancy subsystem were not able to demonstrate eventually. Furthermore, the project has 
introduced practical telecommunication solutions, including IR and 27MHz remote control, 
enabling efficient remote control, configuration, testing, and commissioning of the AUV system. 

6.2 Learning Outcomes 

This project has yielded several significant learning outcomes: 

1. Acquired the structure design of an AUV, such as the AUV electrical system and the mechanical
system.

2. Gaining experience in controlling Linux operating systems.
3. Learning GPIO control, PWM control, UART, and I2C communications in embedded systems.
4. Acquiring Python object-oriented programming skills.
5. Utilizing ROS2 software libraries effectively.
6. Building ROS2 nodes according to personal design plans.
7. Developing effective communication skills for team collaboration on the AUV project.
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8. Appendix 

Appendix 8.1: Control Method for AUV’s thrusters 

 Arduino: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EWDswrgtXzpNmFh9DNdYvgM
BUgdoqgWoFS_yk7yhfVHNWw?e=hPucKh  

Appendix 8.2: 27MHz receiver and UART Communication between OP5P and Pico 

 Pico/ESP32/Arduino: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EX7030HHlt1OjlJwtx4WA2oBpcf
NrrQjb0MdSqkAiWWjjA?e=uAwUJo  

 Orange Pi 5 Plus: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EVzv8gdGtFtNoSTfHKc71FwBq
3LDU0Jfg2EvrsquBQIbAw?e=NKSxXf  

Appendix 8.3: 27MHz transmitter with keypad and 8-module relay 

 Arduino: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQzyvJNuMoBIpX6H9_5HRMY
BbjAcPqaIty3T3erYR-F0yg?e=5KDp0k  

Appendix 8.4: Reading Key values from IR remote control and evdest 

 Orange Pi 5 Plus: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EcIs5F1kxnhDqWCfDilIKmsBjA
KqaY36D4M0E5jr-IXuaA?e=AiQnY4  

Appendix 8.5: IR_control() with thruster_move() 

 Orange Pi 5 Plus: https://connectpolyu-
my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQUeumkzE5lMj-
wRbxieti4BwUm6sbFH1u75Ji02or9Wxw?e=71pLuv  

Appendix 8.6: Source Code for ROS2-based AUV Control System 

https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/tree/master/src 
 
 Control Node: 

https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_node/control
_node/control_node.py 

 Master Node: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_
node/master_node.py 

 Simulated Task 1 Node: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_
node/master_node.py 

https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EWDswrgtXzpNmFh9DNdYvgMBUgdoqgWoFS_yk7yhfVHNWw?e=hPucKh
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EWDswrgtXzpNmFh9DNdYvgMBUgdoqgWoFS_yk7yhfVHNWw?e=hPucKh
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EWDswrgtXzpNmFh9DNdYvgMBUgdoqgWoFS_yk7yhfVHNWw?e=hPucKh
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EX7030HHlt1OjlJwtx4WA2oBpcfNrrQjb0MdSqkAiWWjjA?e=uAwUJo
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EX7030HHlt1OjlJwtx4WA2oBpcfNrrQjb0MdSqkAiWWjjA?e=uAwUJo
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EX7030HHlt1OjlJwtx4WA2oBpcfNrrQjb0MdSqkAiWWjjA?e=uAwUJo
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EVzv8gdGtFtNoSTfHKc71FwBq3LDU0Jfg2EvrsquBQIbAw?e=NKSxXf
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EVzv8gdGtFtNoSTfHKc71FwBq3LDU0Jfg2EvrsquBQIbAw?e=NKSxXf
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EVzv8gdGtFtNoSTfHKc71FwBq3LDU0Jfg2EvrsquBQIbAw?e=NKSxXf
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQzyvJNuMoBIpX6H9_5HRMYBbjAcPqaIty3T3erYR-F0yg?e=5KDp0k
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQzyvJNuMoBIpX6H9_5HRMYBbjAcPqaIty3T3erYR-F0yg?e=5KDp0k
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQzyvJNuMoBIpX6H9_5HRMYBbjAcPqaIty3T3erYR-F0yg?e=5KDp0k
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EcIs5F1kxnhDqWCfDilIKmsBjAKqaY36D4M0E5jr-IXuaA?e=AiQnY4
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EcIs5F1kxnhDqWCfDilIKmsBjAKqaY36D4M0E5jr-IXuaA?e=AiQnY4
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EcIs5F1kxnhDqWCfDilIKmsBjAKqaY36D4M0E5jr-IXuaA?e=AiQnY4
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQUeumkzE5lMj-wRbxieti4BwUm6sbFH1u75Ji02or9Wxw?e=71pLuv
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQUeumkzE5lMj-wRbxieti4BwUm6sbFH1u75Ji02or9Wxw?e=71pLuv
https://connectpolyu-my.sharepoint.com/:u:/g/personal/20058054d_connect_polyu_hk/EQUeumkzE5lMj-wRbxieti4BwUm6sbFH1u75Ji02or9Wxw?e=71pLuv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/tree/master/src
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_node/control_node/control_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_node/control_node/control_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
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 Simulated Task 2 Node: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_
node/master_node.py 

 Simulated Buoyancy Node: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buo
yancy_node/buoyancy_node_test.py 

 Buoyancy Node for Raspberry Pi: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buo
yancy_node/buoyancy_node.py 

 Status Node: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/status_node/status_n
ode/status_node.py 

 Control Interfaces (Services - srv): 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/sr
v/BuoyancyControl.srv 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/sr
v/GetCommand.srv 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/sr
v/GetTask.srv 

 Control Interfaces (Topics - msg): 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/m
sg/AUVStatus.msg 

 ROS2 Launch Configuration: 
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/start_auv/launch/auv
.launch.py 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/master_node/master_node/master_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buoyancy_node/buoyancy_node_test.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buoyancy_node/buoyancy_node_test.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buoyancy_node/buoyancy_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/buoyancy_node/buoyancy_node/buoyancy_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/status_node/status_node/status_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/status_node/status_node/status_node.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/BuoyancyControl.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/BuoyancyControl.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/GetCommand.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/GetCommand.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/GetTask.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/srv/GetTask.srv
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/msg/AUVStatus.msg
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/control_interfaces/msg/AUVStatus.msg
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/start_auv/launch/auv.launch.py
https://github.com/zenkernelsam/PolyU_EEE_AUV2024_FYP/blob/master/src/start_auv/launch/auv.launch.py
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Appendix 8.7: Progress Logging 
 
In 2023/24 semester 1, this project has achieved the following objectives (sort by time): 
 
1. Studying and designing AUV’s electrical system (September-December 2023) 
2. Full control of T200 thrusters by PWM signals from Orange Pi 5 Plus (October 2023) 
3. [Deprecated in AUV Project] Data extraction from pressure sensor (October-November 2023) 
4. Circuit soldering and wiring (November-December 2023) 
5. 3D printing for electrical rack (December 2023) 
6. IR remote control for T200 thrusters and water pump in the buoyancy system (December 2023) 
7. [Deprecated in AUV Project] Migration of the buoyancy system’s control logic from teammate to 

Orange Pi 5 Plus (December 2023)  
8. AUV assembling and operating tests (December 2023-January 2024) 
9. Video Submission for SAUVC (January 2024) 

 
In 2023/24 semester 2, this project has achieved the following objectives (sort by time): 
 
1. Developed 27MHz remote telecommunication methods (January 2024) 
2. Studying ROS2 Client Library APIs (Python) (January-February 2024) 
3. Studying Python Object-oriented programming (January-February 2024) 
4. Designing and developing ROS2 nodes for the AUV control system framework (February-March 

2024) 
5. Testing and optimizing ROS2 nodes for the AUV control system (March 2024) 
6. Consolidating nodes’ interfaces from other teammates’ AUV subsystems to interact with the AUV 

control system nodes (March 2024) 
7. Testing the AUV with ROS2 platform in underwater (March 2024) 
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